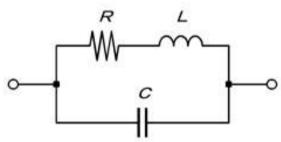
インピーダンスの計算は複素平面で

村田憲治@関高校(非常勤講師)

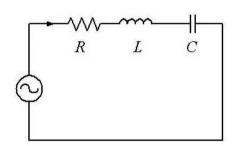
定年退職後,週8時間 アルバイト(非常勤講師)をしているのですが、ヒマな時間がたっぷりあるので、4月に「第1級アマチュア無線技師」の国試を受けてみました。 そしたら、「無線工学」という試験科目のなかに、下図のような回路のインピーダンスを計算する問題が出てきました。

そういえば、高校物理の教科書には RLC の単純な直列や並列のインピー ダンスを求めさせる問題はあります が、こういうヘンなのはありません。 どうやったらうまく計算できるので しょうか。



■複素平面を使ってRLC直列回路のインピーダンス2を計算する

大昔,「R,L,Cを含む交流回路は複素平面を使って計算するのだ」ということを教わった記憶があるので,思い出しながらやってみましょう。



各素子を流れる電流Iは共通で、各素子にかかる電圧の和が電源電圧Vになります。

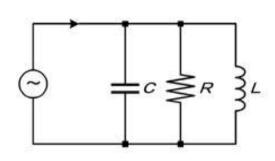
Rにかかる電圧の位相は電流Iと同じで、コイルにかかる電圧は電流より $\pi/2$ 進んでいて、コンデンサにかかる電圧は電流より $\pi/2$ 遅れているから、複素平面で電圧ベクトルの図を描くと右図のようになって、 +iXI

$$V=RI+jX_LI-jX_CI$$
 $=(R+jX_L-jX_C)I$ $=ZI$ $\therefore Z=R+jX_L-jX_C$ この式が大切 \cap RI \cap スの大きさは、 $Z=\sqrt{R^2+(X_L-X_C)^2}$ となります。

数学では虚数はiを使いますが、電子工学系の世界では電流と間違わないようにjを使うのが普通みたいです。(物理学系の世界だとjは電流密度に使いますが・・・)

いまの図で,縦軸が虚軸ですが,この程度の話だと,虚数を使う意味(便利さ)が全然感 じられません。

■複素平面を使ってRLC並列回路のインピーダンス2を計算する



では次に、RLC 並列回路をやってみましょう。

各素子にかかる電圧Vは共通,各素子に流れる電流の和が回路を流れる電流Iになります。

Rに流れる電流の位相は電圧Vと同じで、 コイルに流れる電流は電圧より $\pi/2$ 遅れ

ていて、コンデンサに流れる電流は電圧 $\pi/2$ 進んでいるから、複素平面で電流ベクトルの図を描くと右図のようになって、

$$I = \frac{V}{R} - j \frac{V}{X_L} + j \frac{V}{X_C}$$

$$= V \left(\frac{1}{R} - j \frac{1}{X_L} + j \frac{1}{X_C} \right)$$

$$= V \left(\frac{1}{R} + \frac{1}{jX_L} + \frac{1}{-jX_C} \right)$$

$$= \frac{V}{Z}$$

$$\therefore \frac{1}{Z} = \frac{1}{R} + \frac{1}{jX_L} + \frac{1}{-jX_C}$$

$$= \frac{V}{Z}$$

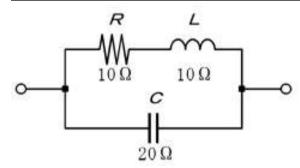
$$Z$$
の大きさは(Z の逆数は), $\frac{1}{Z} = \sqrt{\left(\frac{1}{R}\right)^2 + \left(\frac{1}{X_C} - \frac{1}{X_L}\right)^2}$ となります。

ここまでの計算で分かったことは,

コイルは $jX_L[\Omega]$, コンデンサは $-jX_c[\Omega]$ としてやれば, オーム抵抗 $R[\Omega]$ の合成と同じ計算をすることができる。

ということです。並列回路の計算をしてみて、気づくことですね。

■はじめの問題をやってみましょう



具体的に,

R=10 Ω , $X_{\rm L}$ =10 Ω , $X_{\rm C}$ =20 Ω として インピーダンスZを計算してみます。

RとLは直列なので,ここは単純な和で,10+j10 Ω これと-j20 Ω のコンデンサCとの並列なので,インピーダンスZは,積/和で,

$$Z = \frac{(10+j10) \times (-j20)}{(10+j10) + (-j20)}$$

$$= \frac{-j200+200}{10-j10}$$

$$= \frac{-j20+20}{1-j}$$

$$= \frac{-j20+20}{1-j} \times \frac{1+j}{1+j}$$

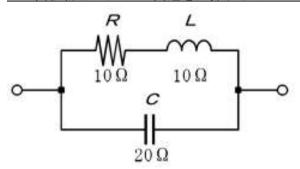
$$= \frac{-j20+20+20+j20}{1-(-1)}$$

$$= \frac{40}{2}$$

$$= 20 \ \Omega$$

虚部がキレイに消える例ですが、虚数jを使うとこうやってカンタンに計算できることがわかります。これは便利。

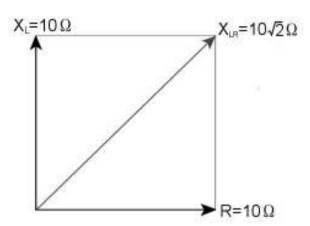
■ "高校物理"的にこの問題を計算すると



試しに,"高校物理"的にこの回路の インピーダンスを求めてみましょう。

まず、R とL の直列部分については、 右のような作図から、

合成抵抗 X_{LR} は、大きさ $10\sqrt{2}$ Ω となります。



この X_{LR} = $10\sqrt{2}$ Ω と X_{C} = 20Ω の並列は、右下のような作図になって、虚部が消え、実部の 1/20 が残りますから、全体のインピーダンスZは 20Ω となることが分かります。 うーん、やっぱり虚数jを使って機械的に計算したほうがラクかも。

あ、ちなみに「第1級アマチュア無線技士」の国試は無事合格しました($^{^{\hat{}}}$) $_{v}$

http://physics.atnifty.com/

